首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3155篇
  免费   440篇
  国内免费   362篇
  2023年   64篇
  2022年   49篇
  2021年   83篇
  2020年   162篇
  2019年   166篇
  2018年   157篇
  2017年   137篇
  2016年   149篇
  2015年   143篇
  2014年   152篇
  2013年   188篇
  2012年   153篇
  2011年   154篇
  2010年   129篇
  2009年   184篇
  2008年   177篇
  2007年   177篇
  2006年   171篇
  2005年   149篇
  2004年   121篇
  2003年   99篇
  2002年   97篇
  2001年   74篇
  2000年   73篇
  1999年   55篇
  1998年   53篇
  1997年   45篇
  1996年   33篇
  1995年   49篇
  1994年   29篇
  1993年   33篇
  1992年   38篇
  1991年   23篇
  1990年   32篇
  1989年   28篇
  1988年   17篇
  1987年   27篇
  1986年   27篇
  1985年   24篇
  1984年   45篇
  1983年   39篇
  1982年   43篇
  1981年   24篇
  1980年   27篇
  1979年   19篇
  1978年   7篇
  1977年   8篇
  1976年   5篇
  1973年   7篇
  1972年   4篇
排序方式: 共有3957条查询结果,搜索用时 250 毫秒
1.
2.
Neurofilament (NF) proteins are distributed in a diminishing proximodistal gradient along rat sciatic nerve when compared with total noncollagen or other proteins in nerve. About a twofold decline of NF proteins can be detected by quantitating nerve proteins that have been separated by gel electrophoresis. A similar decrease of immunoreactivity to each NF subunit is seen in distal nerve segments when noncollagen nerve proteins are immunoblotted. Parallel decreases occur in all three NF proteins, thereby maintaining neurofilament subunit stoichiometry along the neuraxis. The same NF gradient can be detected when the NF contents in nerve branches to the gluteus and gastrocnemius muscles are compared with each other and with those in nerve segments taken from the same proximodistal levels of the parent sciatic nerve. The gradient of NF proteins increases during postnatal development and is readily detected by postnatal day 16. During the same period of development, the heavy NF subunit appears for the first time and is rapidly incorporated throughout the sciatic nerve. Hence, the NF gradient becomes manifest during the development and maturation of the adult form of the axonal cytoskeleton. The basis for the proximodistal gradient of NF proteins in peripheral nerve is presently unknown. The extent of the gradient cannot be accounted for on the basis of diminishing numbers of nerve fibers or increasing amounts of other nerve proteins, e.g., collagen, in distal nerve. An alternative interpretation is that the gradient reflects a low level of NF protein turnover during axonal transport.  相似文献   
3.
4.
5.
The Kahuzi-Biega National Park (KBNP), situated mainly in the Eastern Highlands Ecoregion of the Upper Congo basin, is drained by the Lowa and Ulindi rivers, and some western affluents of Lake Kivu. In this study, the first list of the fish diversity of these systems is provided based on museum collections and complemented, for the Lowa River system and the western Lake Kivu affluents, with recently collected specimens (2013–2017). A total of 118 species are reported from the Lowa basin, 22 from the Ulindi basin and seven from these Lake Kivu affluents. Within the Lowa and Ulindi, respectively, five and one species, all cichlids, have been introduced. Currently, 51 species are reported from within the park, only two of which have been reported from the highlands, i.e., Amphilius kivuensis from the Luha, the source of the Luka River, and Clarias liocephalus from the headwaters of the Lake Kivu’ affluents. With a total of 30 species, Cyprinidae is by far the largest family, representing 25% of the total species diversity of the Lowa basin. It is followed by Mormyridae with 13 species (11%), Alestidae and Mochokidae with 10 species each (8%), Clariidae and Amphiliidae with eight species (7%), and Distichodontidae with six species (5%). Seven new species for science were discovered and 11 species were found to be endemic to the Lowa system. Although further exploration is needed, this underscores the importance of the KBNP in protecting the fish fauna of the Lowa basin but also highlights the park's limited coverage of the fish fauna of the Lowa basin.  相似文献   
6.
Applied ecology is based on an assumption that a management action will result in a predicted outcome. Testing the prediction accuracy of ecological models is the most powerful way of evaluating the knowledge implicit in this cause-effect relationship, however, the prevalence of predictive modeling and prediction testing are spreading slowly in ecology. The challenge of prediction testing is particularly acute for small-scale studies, because withholding data for prediction testing (e.g., via k-fold cross validation) can reduce model precision. However, by necessity small-scale studies are common. We use one such study that explored small mammal abundance along an elevational gradient to test prediction accuracy of models with varying degrees of information content. For each of three small mammal species, we conducted 5000 iterations of the following process: (1) randomly selected 75 % of the data to develop generalized linear models of species abundance that used detailed site measurements as covariates, (2) used an information theoretic approach to compare the top model with detailed covariates to habitat type-only and null models constructed with the same data, (3) tested those models’ ability to predict the 25 % of the randomly withheld data, and (4) evaluated prediction accuracy with a quadratic loss function. Detailed models fit the model-evaluation data best but had greater expected prediction error when predicting out-of-sample data relative to the habitat type models. Relationships between species and detailed site variables may be evident only within the framework of explicitly hierarchical analyses. We show that even with a small but relatively typical dataset (n = 28 sampling locations across 125 km over two years), researchers can effectively compare models with different information content and measure models’ predictive power, thus evaluating their own ecological understanding and defining the limits of their inferences. Identifying the appropriate scope of inference through prediction testing is ecologically valuable and is attainable even with small datasets.  相似文献   
7.
An A in equilibrium with G transition in exon III is known to differentiate alleles A and B of the cattle beta-lactoglobulin (BLG) gene. A BLG exon III fragment containing the transition site was amplified by the polymerase chain reaction. Temperature gradient gel electrophoresis (TGGE) was then used to detect this transition and hence to genotype cattle: the AT base-pair in allele A was readily distinguished from the GC base-pair of allele B. TGGE can be used to detect any single base-pair substitution, and thus is a powerful method of detecting genetic variability.  相似文献   
8.

Aim

Savanna biomes cover around 20% of land surfaces, yet the origins and processes that have shaped their biodiversity remain understudied. Here, we assess the timing of diversification and how patterns of genetic diversity vary along an aridity gradient in specialized saxicoline gecko clades (Oedura spp.) from the tropical savannas of northern Australia.

Location

Australian Monsoonal Tropics (AMT), Kimberley region (Western Australia).

Methods

We compiled mitochondrial and nuclear data for two Kimberley endemic lizard clades (Oedura filicipoda/murrumanu and O. gracilis), and allied non‐Kimberley taxa (O. marmorata complex). Species delimitation methods were used to identify evolutionary lineages, Maximum‐likelihood and Bayesian phylogenetic methods were employed to assess relationships and diversification timeframes, and rainfall data and range sizes were tested for correlations.

Results

Phylogenetic analyses of cryptic or recently discovered lineage diversity revealed late‐Miocene to early‐Pliocene crown ages. Microendemism and diversity were highest in high‐rainfall regions, while the most widespread lineages occurred in the central and south‐east Kimberley, and showed evidence of introgression with parapatric lineages.

Main conclusions

The initial diversification in both clades was broadly concordant with global climatic events linked to the expansion of savanna biomes in the lateMiocene. Higher endemism in mesic and refugial areas suggests long histories of localized persistence, while wider distributions and evidence of introgression suggest a dynamic history at the arid‐monsoonal interface.  相似文献   
9.
10.
Explanations for major biodiversity patterns have not achieved a consensus, even for the latitudinal diversity gradient (LDG), but most relate to patterns of solar energy influx into Earth systems, and its effects on temperature (as biochemical activity rates are temperature sensitive) and photosynthesis (which drives nearly all of the productivity that fuels ecosystems). Marine systems break some of the confounding correlations among temperature, latitude and biodiversity that typify the terrestrial systems that have dominated theoretical discussions and large‐scale analyses. High marine diversities occur not only in warm shallow seas where productivity may be either low or high, depending on regional features, but also in very cold deep‐sea regions, indicating that diversity is promoted by stability in temperature and in trophic resources (nutrients and food items), and more specifically by their interaction, rather than by high mean values of either variable. The common association of high diversity with stable but low to moderate annual productivity suggests that ecological specialization underlies the similarly high diversities in the shallow tropics and deep sea. Recent work on shallow‐marine bivalves is consistent with this view of decreasing specialization in less stable habitats. Lower diversities in shallow seas are associated with either high thermal seasonality (chiefly in temperate latitudes) or highly seasonal trophic supplies (at any latitude), which exclude species that are adapted to narrow ranges of those variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号